p <- seq(0.25, 2, by=0.25)
rlse_ray(p, 2)
rlre_ray(p, 2, 0.5)
rlhce_ray(p, 2, 0.5)
rlae_ray(p, 2, 0.5)
# A graphic representation of relative loss (RL)
library(ggplot2)
# p is a truncation time vector
p <- seq(0.25, 2, by = 0.25)
# RL based on the Rényi entropy
z1 <- rlre_ray(p, 0.1, 0.5)
# RL based on the Havrda and Charvat entropy
z2 <- rlhce_ray(p, 0.1, 0.5)
# RL based on the Arimoto entropy
z3 <- rlae_ray(p, 0.1, 0.5)
# RL based on the Shannon entropy
z4 <- rlse_ray(p, 0.1)
df <- data.frame(x = p, RL = z1, z2, z3, z4)
head(df)
p1 <- ggplot(df, aes(x = p, y = RL, color = Entropy))
p1 + geom_line(aes(colour = "RE"), size = 1) + geom_line(aes(x,
y = z2, colour = "HCE"), size = 1) + geom_line(aes(x, y = z3,
colour = "AR"), size = 1) + geom_line(aes(x, y = z4, colour = "SE"),
size = 1) + ggtitle(expression(delta == 0.5 ~ ~alpha == 0.1))
Run the code above in your browser using DataLab